Locating-dominating codes in cycles
نویسندگان
چکیده
The smallest cardinality of an r-locating-dominating code in a cycle Cn of length n is denoted by M r (Cn). In this paper, we prove that for any r ≥ 5 and n ≥ nr when nr is large enough (nr = O(r3)) we have n/3 ≤ M r (Cn) ≤ n/3 + 1 if n ≡ 3 (mod 6) and M r (Cn) = n/3 otherwise. Moreover, we determine the exact values of M 3 (Cn) and M 4 (Cn) for all n.
منابع مشابه
Identifying codes and locating-dominating sets on paths and cycles
Let G = (V,E) be a graph and let r ≥ 1 be an integer. For a set D ⊆ V , define Nr[x] = {y ∈ V : d(x, y) ≤ r} and Dr(x) = Nr[x] ∩ D, where d(x, y) denotes the number of edges in any shortest path between x and y. D is known as an r-identifying code (r-locating-dominating set, respectively), if for all vertices x ∈ V (x ∈ V \D, respectively), Dr(x) are all nonempty and different. In this paper, w...
متن کاملIdentifying and locating-dominating codes on chains and cycles
Consider a connected undirected graph G = (V, E), a subset of vertices C ⊆ V , and an integer r ≥ 1; for any vertex v ∈ V , let Br (v) denote the ball of radius r centered at v, i.e., the set of all vertices within distance r from v. If for all vertices v ∈ V (respectively, v ∈ V \C), the sets Br (v) ∩ C are all nonempty and different, then we call C an r -identifying code (respectively, an r -...
متن کاملNordhaus-Gaddum bounds for locating domination
A dominating set S of graph G is called metric-locating-dominating if it is also locating, that is, if every vertex v is uniquely determined by its vector of distances to the vertices in S . If moreover, every vertex v not in S is also uniquely determined by the set of neighbors of v belonging to S , then it is said to be locating-dominating. Locating, metric-locating-dominating and locatingdom...
متن کاملLocating-Dominating Sets and Identifying Codes in Graphs of Girth at least 5
Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and o...
متن کاملNew results on variants of covering codes in Sierpiński graphs
In this paper we study identifying codes, locating-dominating codes, and total-dominating codes in Sierpiński graphs. We compute the minimum size of such codes in Sierpiński graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 49 شماره
صفحات -
تاریخ انتشار 2011